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Predictive Maintenance Toolbox Product Description
Design and test condition monitoring and predictive maintenance algorithms

Predictive Maintenance Toolbox lets you label data, design condition indicators, and estimate the
remaining useful life (RUL) of a machine.

The toolbox provides functions and an interactive app for exploring, extracting, and ranking features
using data-based and model-based techniques, including statistical, spectral, and time-series analysis.
You can monitor the health of rotating machines such as bearings and gearboxes by extracting
features from vibration data using frequency and time-frequency methods. To estimate a machine's
time to failure, you can use survival, similarity, and trend-based models to predict the RUL.

You can analyze and label sensor data imported from local files, cloud storage, and distributed file
systems. You can also label simulated failure data generated from Simulink® models. The toolbox
includes reference examples for motors, gearboxes, batteries, and other machines that can be reused
for developing custom predictive maintenance and condition monitoring algorithms.

1 Introduction to Predictive Maintenance Toolbox
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Designing Algorithms for Condition Monitoring and Predictive
Maintenance

Predictive maintenance allows equipment users and manufacturers to assess the working condition of
machinery, diagnose faults, or estimate when the next equipment failure is likely to occur. When you
can diagnose or predict failures, you can plan maintenance in advance, better manage inventory,
reduce downtime, and increase operational efficiency.

Developing a predictive maintenance program requires a well-designed strategy to assess the
working condition of the machinery and detect incipient faults in a timely manner. Doing so requires
effective use of both available sensor measurements and your knowledge of the system. You must
take many factors into consideration, including:

• The observed sources of faults and their relative frequency. Such sources can be the core
components of the machine (such as impeller blades and flow valves in a pump), its actuators
(such as an electric motor), or its various sensors (such as accelerometers and flow meters).

• Availability of process measurements through sensors. The number, type and location of sensors,
and their reliability and redundancies all affect both algorithm development and cost.

• How various sources of faults translate to observed symptoms. Such cause-effect analysis can
require extensive processing of data from the available sensors.

• Physical knowledge about the system dynamics. This knowledge might come from mathematical
modeling of the system and its faults and from the insights of domain experts. Understanding
system dynamics involves detailed knowledge of relationships among various signals from the
machinery (such as input-output relationships among the actuators and sensors), the machine
operating range, and the nature of the measurements (for example, periodic, constant or
stochastic).

• The ultimate maintenance goal, such as fault recovery or development of a maintenance schedule.

Algorithms for Condition Monitoring and Prognostics
A predictive maintenance program uses condition monitoring and prognostics algorithms to analyze
data measured from the system in operation.

Condition monitoring uses data from a machine to assess its current condition and to detect and
diagnose faults in the machine. Machine data is data such as temperature, pressure, voltage, noise,
or vibration measurements, collected using dedicated sensors. A condition monitoring algorithm
derives metrics from the data called condition indicators. A condition indicator is any feature of
system data whose behavior changes in a predictable way as the system degrades. A condition
indicator can be any quantity derived from the data that clusters similar system status together, and
sets different status apart. Thus a condition-monitoring algorithm can perform fault detection or
diagnosis by comparing new data against the established markers of faulty conditions.

Prognostics is forecasting when a failure will happen based on the current and past state of the
machine. A prognostics algorithm typically estimates the machine's remaining useful life (RUL) or
time-to-failure by analyzing the current state of the machine. Prognostics can use modeling, machine
learning, or a combination of both to predict future values of condition indicators. These future values
are then used to compute RUL metrics, which determine if and when maintenance should be
performed. For the gearbox example, a prognostics algorithm might fit the varying peak vibration
frequency and magnitude to a time series to predict their future values. The algorithm can then
compare the predicted values to a threshold defining healthy operation of the gearbox, predicting if
and when a fault will occur.

 Designing Algorithms for Condition Monitoring and Predictive Maintenance
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A predictive maintenance system implements prognostics and condition monitoring algorithms with
other IT infrastructure that makes the end results of the algorithm accessible and actionable to end
users who perform the actual maintenance tasks. Predictive Maintenance Toolbox provides tools to
help you design such algorithms.

Workflows for Algorithm Development
The following illustration shows a workflow for developing a predictive maintenance algorithm.

Beginning with data that describes your system in a range of healthy and faulty conditions, you
develop a detection model (for condition monitoring) or a prediction model (for prognostics).
Developing such a model requires identifying appropriate condition indicators and training a model
to interpret them. That process is very likely to be iterative, as you try different condition indicators
and different models until you find the best model for your application. Finally, you deploy the
algorithm and integrate it into your systems for machine monitoring and maintenance.

Acquire Data
Designing predictive maintenance algorithms begins with a body of data. Often you must manage and
process large sets of data, including data from multiple sensors and multiple machines running at
different times and under different operating conditions. You might have access to one or more of the
following types of data:

• Real data from normal system operation
• Real data from system operating in a faulty condition
• Real data from system failures (run-to-failure data)

For instance, you might have sensor data from system operation such as temperature, pressure, and
vibration. Such data is typically stored as signal or time series data. You might also have text data,
such as data from maintenance records, or data in other forms. This data is stored in files, databases,
or distributed file systems such as Hadoop®.

In many cases, failure data from machines is not available, or only a limited number of failure
datasets exist because of regular maintenance being performed and the relative rarity of such
incidents. In this case, failure data can be generated from a Simulink model representing the system
operation under different fault conditions.

1 Introduction to Predictive Maintenance Toolbox
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Predictive Maintenance Toolbox provides functionality for organizing, labeling, and accessing such
data stored on disk. It also provides tools to facilitate the generation of data from Simulink models for
predictive maintenance algorithm development. For more information, see “Data Ensembles for
Condition Monitoring and Predictive Maintenance”.

Preprocess Data
Data preprocessing is often necessary to convert the data into a form from which condition indicators
are easily extracted. Data preprocessing includes simple techniques such as outlier and missing value
removal, and advanced signal processing techniques such as short-time Fourier transforms and
transformations to the order domain.

Understanding your machine and the kind of data you have can help determine what preprocessing
methods to use. For example, if you are filtering noisy vibration data, knowing what frequency range
is most likely to display useful features can help you choose preprocessing techniques. Similarly, it
might be useful to transform gearbox vibration data to the order domain, which is used for rotating
machines when the rotational speed changes over time. However, that same preprocessing would not
be useful for vibration data from a car chassis, which is a rigid body.

For more information on preprocessing data for predictive maintenance algorithms, see “Data
Preprocessing for Condition Monitoring and Predictive Maintenance”.

Identify Condition Indicators
A key step in predictive maintenance algorithm development is identifying condition indicators,
features in your system data whose behavior changes in a predictable way as the system degrades. A
condition indicator can be any feature that is useful for distinguishing normal from faulty operation or
for predicting remaining useful life. A useful condition indicator clusters similar system status
together, and sets different status apart. Examples of condition indicators include quantities derived
from:

• Simple analysis, such as the mean value of the data over time
• More complex signal analysis, such as the frequency of the peak magnitude in a signal spectrum,

or a statistical moment describing changes in the spectrum over time
• Model-based analysis of the data, such as the maximum eigenvalue of a state space model which

has been estimated using the data
• Combination of multiple features into a single effective condition indicator (fusion)

For example, you can monitor the condition of a gearbox using vibration data. Damage to the gearbox
results in changes to the frequency and magnitude of the vibrations. The peak frequency and peak
magnitude are thus useful condition indicators, providing information about the kind of vibrations
present in the gearbox. To monitor the health of the gearbox, you can continuously analyze the
vibration data in the frequency domain to extract these condition indicators.

Even when you have real or simulated data representing a range of fault conditions, you might not
know how to analyze that data to identify useful condition indicators. The right condition indicators
for your application depend on what type of system, system data, and system knowledge you have.
Therefore, identifying condition indicators can require some trial and error, and is often iterative with
the training step of the algorithm development workflow. Among the techniques commonly used for
extracting condition indicators are:

 Designing Algorithms for Condition Monitoring and Predictive Maintenance
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• Order analysis
• Modal analysis
• Spectrum analysis
• Envelope spectrum
• Fatigue analysis
• Nonlinear time-series analysis
• Model-based analysis such as residual computation, state estimation, and parameter estimation

Predictive Maintenance Toolbox supplements functionality in other toolboxes such as Signal
Processing Toolbox™ with functions for extracting signal-based or model-based condition indicators
from measured or generated data. For more information, see “Identify Condition Indicators”.

Train Detection or Prediction Model
At the heart of the predictive maintenance algorithm is the detection or prediction model. This model
analyzes extracted condition indicators to determine the current condition of the system (fault
detection and diagnosis) or predict its future condition (remaining useful life prediction).

Fault Detection and Diagnosis

Fault detection and diagnosis relies on using one or more condition indicator values to distinguish
between healthy and faulty operation, and between different types of faults. A simple fault-detection
model is a threshold value for the condition indicator that is indicative of a fault condition when
exceeded. Another model might compare the condition indicator to a statistical distribution of
indicator values to determine the likelihood of a particular fault state. A more complex fault-diagnosis
approach is to train a classifier that compares the current value of one or more condition indicators
to values associated with fault states, and returns the likelihood that one or another fault state is
present.

When designing your predictive maintenance algorithm, you might test different fault detection and
diagnosis models using different condition indicators. Thus, this step in the design process is likely
iterative with the step of extraction condition indicators, as you try different indicators, different
combinations of indicators, and different decision models. Statistics and Machine Learning Toolbox™
and other toolboxes include functionality that you can use to train decision models such as classifiers
and regression models. For more information, see “Decision Models for Fault Detection and
Diagnosis”.

Remaining Useful Life Prediction

Examples of prediction models include:

• A model that fits the time evolution of a condition indicator and predicts how long it will be before
the condition indicator crosses some threshold value indicative of a fault condition.

• A model that compares the time evolution of a condition indicator to measured or simulated time
series from systems that ran to failure. Such a model can compute the most likely time-to-failure
of the current system.

You can predict remaining useful life by forecasting with dynamic system models or state estimators.
Additionally, Predictive Maintenance Toolbox includes specialized functionality for RUL prediction
based on such techniques as similarity, threshold, and survival analysis. For more information, see
“Models for Predicting Remaining Useful Life”.

1 Introduction to Predictive Maintenance Toolbox
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Deploy and Integrate
When you have identified a working algorithm for handling your new system data, processing it
appropriately, and generating a prediction, deploy the algorithm and integrate it into your system.
Based the specifics of your system, you can deploy your algorithm on the cloud or on embedded
devices.

A cloud implementation can be useful when you are gathering and storing large amounts of data on
the cloud. Removing the need to transfer data between the cloud and local machines that are running
the prognostics and health monitoring algorithm makes the maintenance process more effective.
Results calculated on the cloud can be made available through tweets, email notifications, web apps,
and dashboards.

Alternatively, the algorithm can run on embedded devices that are closer to the actual equipment.
The main benefits of doing this are that the amount of information sent is reduced as data is
transmitted only when needed, and updates and notifications about equipment health are
immediately available without any delay. .

A third option is to use a combination of the two. The preprocessing and feature extraction parts of
the algorithm can be run on embedded devices, while the predictive model can run on the cloud and
generate notifications as needed. In systems such as oil drills and aircraft engines that are run
continuously and generate huge amounts of data, storing all the data on board or transmitting it is
not always viable because of cellular bandwidth and cost limitations. Using an algorithm that
operates on streaming data or on batches of data lets you store and send data only when needed.

MathWorks® code generation and deployment products can help you with this step of the workflow.
For more information, see “Deploy Predictive Maintenance Algorithms”.

References
[1] Isermann, R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance.

Berlin: Springer Verlag, 2006.

See Also

Related Examples
• “Using Simulink to Generate Fault Data”
• “Rolling Element Bearing Fault Diagnosis”
• “Similarity-Based Remaining Useful Life Estimation”
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer”
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Getting Started with Diagnostic Feature
Designer

• “Identify Condition Indicators for Predictive Maintenance Algorithm Design” on page 2-2
• “Import and Visualize Ensemble Data in Diagnostic Feature Designer” on page 2-5
• “Process Data and Explore Features in Diagnostic Feature Designer” on page 2-15
• “Rank and Export Features in Diagnostic Feature Designer” on page 2-31
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Identify Condition Indicators for Predictive Maintenance
Algorithm Design

Predictive maintenance allows equipment users and manufacturers to assess the working condition of
machinery, diagnose faults, or estimate when the next equipment failure is likely to occur. When you
can diagnose or predict failures, you can plan maintenance in advance, better manage inventory,
reduce downtime, and increase operational efficiency.

A key step in predictive maintenance algorithm development is identifying condition indicators, which
are features in your system data whose behavior changes in a predictable way as the system
degrades. A condition indicator can be any feature that is useful for distinguishing normal from faulty
operation or for predicting remaining useful life. A useful condition indicator clusters similar system
status together and sets different status apart. Examples of condition indicators include quantities
derived from:

• Simple analysis, such as the mean value of the data over time.
• More complex signal analysis, such as the frequency of the peak magnitude in a signal spectrum,

or the time-synchronous average of a signal from a rotating source.

In the Diagnostic Feature Designer app, you can develop features and evaluate potential condition
indicators using a multifunction graphical interface.

2 Getting Started with Diagnostic Feature Designer
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The app operates on data ensembles. An ensemble is a collection of data sets, created by measuring
or simulating a system under varying conditions. An individual data set representing one system
under one set of conditions is a member. Diagnostic Feature Designer processes all ensemble
members when executing one operation.

Within Diagnostic Feature Designer, you can interactively:

• Explore your data ensemble visually by plotting and interacting with your ensemble members
together.

• Convert your data into different forms for further exploration. For example, you can create a
power spectrum of your signal to evaluate its frequency-domain behavior. Or you can perform
time-synchronous averaging, which filters out any noise or disturbance that is not associated with
your machine rotation.

• Generate features of various types, and plot histograms that visualize the effectiveness of each
feature in separating data from systems with different conditions.

• Rank the generated features by using ranking algorithms that use specific criteria to establish
which features are most effective.

 Identify Condition Indicators for Predictive Maintenance Algorithm Design
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• Export the data set or the feature set in the app to your MATLAB® workspace, or export the
feature set to Classification Learner for model development and additional feature assessment.

• Generate MATLAB code for your features so that you can perform the feature calculations on
other or larger data sets.

The following three-part tutorial takes you through the Diagnostic Feature Designer workflow for a
transmission system model, from your initial data import to the export of your chosen features.

1 “Import and Visualize Ensemble Data in Diagnostic Feature Designer” on page 2-5
2 “Process Data and Explore Features in Diagnostic Feature Designer” on page 2-15
3 “Rank and Export Features in Diagnostic Feature Designer” on page 2-31

The full workflow for a predictive maintenance program includes multiple steps that begin with data
acquisition and end with deployment and integration of a condition monitoring algorithm. For more
information, see “Designing Algorithms for Condition Monitoring and Predictive Maintenance” on
page 1-3.

2 Getting Started with Diagnostic Feature Designer
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Import and Visualize Ensemble Data in Diagnostic Feature
Designer

Diagnostic Feature Designer is an app that allows you to develop features and evaluate potential
condition indicators using a multifunction graphical interface.

The app operates on data ensembles. An ensemble is a collection of data sets, created by measuring
or simulating a system under varying conditions. An individual dataset representing one system
under one set of conditions is a member. Diagnostic Feature Designer processes all ensemble
members when executing one operation.

This example shows how to import data into Diagnostic Feature Designer and visualize your
imported data.

Load Transmission Model Data
This example uses data generated from a transmission system model in “Using Simulink to Generate
Fault Data”. Outputs of the model include:

• Vibration measurements from a sensor monitoring casing vibrations
• Data from the tachometer, which issues a pulse every time the shaft completes a rotation
• Fault codes indicating the presence of a modeled fault

Load the data. The data is a table containing variables logged during multiple simulations of the
model under varying conditions. Sixteen members have been extracted from the transmission model
logs to form an ensemble. Four of these members represent healthy data, and the remaining 12
members exhibit varying levels of sensor drift.

load dfd_Tutorial dataTable

View this table in your MATLAB command window.

dataTable =

  16×3 table

        Vibration               Tacho           faultCode
    __________________    __________________    _________

    [6000×1 timetable]    [6000×1 timetable]        0    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        0    
    [6000×1 timetable]    [6000×1 timetable]        0    
    [6000×1 timetable]    [6000×1 timetable]        0    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1    

 Import and Visualize Ensemble Data in Diagnostic Feature Designer
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    [6000×1 timetable]    [6000×1 timetable]        1    
    [6000×1 timetable]    [6000×1 timetable]        1  

The table contains 16 rows, each representing one member. Each column has a variable name. The
data variables Vibration and Tacho are each represented by a timetable, and all timetables have
the same length. The third variable, faultCode, is the condition variable. faultCode has a value of
0 for healthy and 1 for degraded.

Open Diagnostic Feature Designer
To open Diagnostic Feature Designer, type the following in your command window:

diagnosticFeatureDesigner

Import Data
Import the dataset that you previously loaded into your MATLAB workspace. To initiate the import
process, in the Feature Designer tab, click New Session.

The New Session dialog box opens. From the Source Choose Variable list in the Select more
variables pane, select dataTable.

The Source variablespane of the dialog box now displays the variables within dataTable. By
default, the app initially selects all source variables for import.

2 Getting Started with Diagnostic Feature Designer
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The app has extracted the variable names from your member tables and embedded timetables. The
icon next to the Vibration and Tacho variable names indicates that the app interprets the variables
as time-based signals that each contain Time and Data variables. You can verify this interpretation in
the Summary pane at the bottom, which displays the variable name, type, and independent variable
for each source-level variable.

A third variable, Sample (Virtual), also appears in the list, but is not selected and does not
appear in Summary. The import dialog always includes this variable as an option to allow you to
generate virtual independent variables within the app. Because Vibration and Tacho both contain
this unselected variable, the selection boxes contain fill rather than a check mark.

View the properties of Vibration by selecting the Vibration row.

 Import and Visualize Ensemble Data in Diagnostic Feature Designer

2-7



The Source variable properties pane displays the Vibration variable name and the Signal
variable type. For Vibration, Signal is the only Variable type option because the vibration data is
packaged in a timetable. Source variable properties also displays a preview of Vibration data.

Now examine the variable type of faultCode. The icon next to faultCode, which illustrates a
histogram, represents a feature. Features and condition variables can both be represented by scalars,
and the app cannot distinguish between the two unless the condition variable is a categorical. To
change the variable type, click on the faultCode to open the its properties, and, in Variable type,
change Feature to Condition Variable.

2 Getting Started with Diagnostic Feature Designer
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The icon for faultCode now illustrates a label, which represents a condition variable.

Confirm the Ensemble Specification in Summary and click Import.

Your imported signals are now in the Signals & Spectra area, and your imported ensemble
Ensemble1 is in the Datasets area.

The color code next to a signal represents that signal in plots. The icon to the left of the signal
indicates the variable type, which, for the variables you imported, is Signal.

 Import and Visualize Ensemble Data in Diagnostic Feature Designer
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Show information about your dataset by selecting its name in the Datasets area.

Visualize Data
After you load your signals, plot them and view all your ensemble members together. To view your
vibration signal, in the Signals & Spectra pane, select Vibration/Data. Selecting a signal variable
enables the Signal Trace option in the plot gallery. Click Signal Trace.

The plotting area displays a signal trace plot of all 16 members. As you move the cursor over the
data, an indicator in the lower right corner identifies the member your cursor is on. A second
indicator provides the fault code value for that member.

2 Getting Started with Diagnostic Feature Designer
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Interact with the trace plot using standard MATLAB plot tools, such as zoom and pan. Access these
tools by pointing to the top right edge of the plot. You can also use the specialized options on the
Signal Trace tab, which appears when you select the Signal Trace plot.

Explore Your Data Using Signal Trace Options

Explore the data in your plot using options in the Signal Trace tab.

Measure the distance between peaks for the one of the members with the high peaks.

1 Zoom in on the second clusters of peaks. In the panner strip, move the right handle to about 8.
Then, move the panner window so that the left handle is at about 4. You now have the second set
of peaks within the window.

2 Pause on the first high peak, and note the member number. The second high peak is a
continuation of the same member trace.

3 Click Data Cursors, and select Vertical Cursor. Place the left cursor over the first high peak
and the right cursor over the second peak for that member. The lower right corner of the plot
displays the separation dX.

4 Select Lock Horizontal Spacing. Shift the cursor pair to the right by one peak for the same
member. Note that the right cursor is now aligned with the third member peak.

5 Restore the full window by moving the handles back to the edges of the panner.
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Show which members have matching faultCode values by using color coding. Select Ensemble
View Preferences > Group by "faultCode".

The resulting signal trace shows you that all the highest vibration peaks are associated with data
from faulty systems. However, not all the faulty systems have higher peaks.

2 Getting Started with Diagnostic Feature Designer
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Save your session data. You need this data to run the “Process Data and Explore Features in
Diagnostic Feature Designer” on page 2-15 example.

Next Steps
The next step is to explore different ways to characterize your data through features. The example
“Process Data and Explore Features in Diagnostic Feature Designer” on page 2-15 guides you
through the feature exploration process.

 Import and Visualize Ensemble Data in Diagnostic Feature Designer
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See Also
Diagnostic Feature Designer

More About
• “Process Data and Explore Features in Diagnostic Feature Designer” on page 2-15
• “Rank and Export Features in Diagnostic Feature Designer” on page 2-31
• “Import Data into Diagnostic Feature Designer”
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer”
• “Data Ensembles for Condition Monitoring and Predictive Maintenance”
• “Condition Indicators for Monitoring, Fault Detection, and Prediction”
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Process Data and Explore Features in Diagnostic Feature
Designer

This example shows how to process your data in the app in preparation for feature extraction. If you
want to follow along with the steps interactively, use the data you imported in “Import and Visualize
Ensemble Data in Diagnostic Feature Designer” on page 2-5. Use Open Session to reload your
session data using the file name you provided.

If you have no session data, execute the steps for loading and importing data in “Import and Visualize
Ensemble Data in Diagnostic Feature Designer” on page 2-5.

A key step in predictive maintenance algorithm development is identifying condition indicators.
Condition indicators are features in your system data whose behavior changes in a predictable way as
the system degrades. A condition indicator can be any feature that is useful for distinguishing normal
from faulty operation or for predicting remaining useful life. A useful feature clusters similar system
status together and sets different status apart.

Diagnostic Feature Designer lets you design features that provide these diagnostics.

• For some features, you can generate features directly using signals you imported.
• For other features, you must perform additional signal processing, such as filtering and averaging,

to have meaningful results.

The processing you perform depends both on the computational requirements of the feature and the
characteristics of your systems and your system data. This example shows how to:

• Process your data in preparation for feature extraction
• Generate various types of feature
• Interpret the effectiveness of your features in histograms

Perform Time-Synchronous Averaging
The data for this system represents a transmission system with rotating parts. The variables include
tachometer outputs that precisely mark the completion of each shaft revolution. The data, therefore,
is an ideal candidate for time-synchronous averaging.

Time-synchronous averaging (TSA) is a common technique for analyzing data from rotating
machinery. TSA averages rotation by rotation, and filters out any disturbances or noise that is not
coherent with the rotation.
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TSA is useful for isolating fault signatures that repeat each rotation, such as perturbations from gear-
tooth defects. Features generated from a TSA signal rather than the original vibration signal provide
clearer differentiation for rotational fault conditions. This advantage holds true even for features that
are not specifically for rotating machinery.

To compute the TSA of the vibration data, first select the signal to average, Vibration/Data, in the
data browser. Then select Filtering & Averaging > Time-Synchronous Averaging.

A new Time-Synchronous Averaging tab appears. The app title bar above the tab section displays
Vibration/Data, the signal you are processing.

Since you have a tacho signal, select Tacho signal and Tacho/Data. Clear Compute Nominal
Speed (rpm).

Click Apply to start the TSA computation for each of the 16 members of the ensemble. A progress bar
shows the status while the computation progresses.
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When the computation concludes:

• The app adds a new signal variable Vibration_tsa to the imported Ensemble1 dataset.
• The signal trace plots Vibration_tsa. The time axis of this trace is less than the four seconds

long. The original vibration data was 30 seconds long. The shorter timespan reflects the duration
of a single rotation for each member.

• The member shaft rates diverge. This divergence is evident in the increasing misalignment of the
peaks during the rotation, and the fact that the member traces stop at different times.

Compute a Power Spectrum
The TSA signal gives you enough information to start generating time-domain features, but you must
provide a spectrum to explore spectral features. To generate a power spectrum, select the new TSA
signal Vibration_tsa/Data in the data browser. Then click Spectral Estimation to bring up the
spectrum options. From these options, select Autoregressive Model.
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The Autoregressive Model tab provides parameters that you can modify. Accept the default values
by clicking Apply.

The power spectrum processing results in a new variable, Vibration_ps/SpectrumData. The
associated icon represents a frequency response.

You can determine the source of the new spectrum (the original signal from which new spectrum was
derived) by hovering over the spectrum name in the data browser. The following figure shows the
resulting tooltip, which contains the information that the signal source is Vibration_tsa/Data,
which in turn has the source Vibration/Data.

A plot of the spectrum appears in the plot area. As with Signal Trace, a Power Spectrum tab
provides options for plotting. These options are similar to Signal Trace. There is no Panner option
because Panner works only with time and not frequency.
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Generate Features
Signal Features

Generate features based on general data statistics, using the TSA signal as your source. Select Time
Domain Features > Signal Features.
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When you create features, you choose your source signal as part of the feature specification rather
than by preselecting the source signal in the data browser. Change Signal to Vibration_tsa/Data.
The default is for all the features to be selected. Clear the selections for Shape Factor and Signal
Processing Metrics.
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For every selected feature, the app computes a value for each ensemble member and displays the
results in a histogram. Each histogram contains bins containing the number of feature values which
fall within the bin range. The Histogram tab displays parameters that determine the content and
resolution of the histograms.

The histogram groups, or color codes, the data according to the condition variable faultCode in
Group By. Blue data is healthy and orange data is faulty, as indicated by the legend (color coding
may appear different in your session). For feature values where the healthy and faulty labels overlap,
the color appears brown due to the overlap between blue and orange.
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You can get a rough idea of which features are effective by assessing which ones clearly segregate
blue data from orange data. RMS and CrestFactor appear effective. There are only small areas of
overlap. Conversely, Skewness and Kurtosis have large amounts of overlap. These features appear
ineffective for this data and this condition variable.

By default, the app plots the histograms for all the features in the feature table. You can focus on a
subset of histograms by using Select Features. Use Select Features to limit the histogram plots to
the first four in the feature table.
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The histogram view now includes only the features you selected.
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Control the appearance of the histograms using the parameters in the Histogram tab, which
activates when you generate the histograms. The CrestFactor feature appears to separate healthy
and unhealthy data almost completely. Investigate whether this result is sensitive to resolution. In the
Histogram tab, the auto setting of bin width results in a resolution of 0.1 for CrestFactor. Enter a
bin width 0.05, and click Apply.
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At this resolution, both CrestFactor and ImpulseFactor appear to completely separate healthy
from faulty data. ClearanceFactor still has some mixed data, but to a lesser degree than with the
larger bin width. Kurtosis had a smaller bin width of 0.002 with the auto bin width setting.
Changing the bin width to 0.05 results in a single bin that contains all the Kurtosis data.

Histograms visualize the ability of features to separate healthy from unhealthy data. You can also get
a numerical assessment using Group Distance. The group distance represents the separation between
the healthy and unhealthy data distributions. Click Group Distance. In the dialog box, select
CrestFactor in Show grouping for feature.
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The group distance, represented by the KS Statistic, is 1. This probability value represents complete
separation.

Next, select Kurtosis. The Kurtosis histogram showed substantial intermixing.
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The KS Statistic in this case is about 0.6, reflecting the intermixing in the histogram.

Restore Bin Width to auto.

Rotating Machinery Features

Since you have rotating machinery, compute rotating machinery features. Select Time-Domain
Features > Rotating machinery Features. In the rotating machinery dialog box, select your TSA
signal to analyze and select the TSA signal metrics.

Other feature choices in the dialog box use the filtered TSA difference and regular signals as a
source. This example does not use the difference and regular signal-based features because
computation for those signals assumes common shaft speed.
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The app automatically adds the new features to the feature table and the Select Features list, and
plots the new histograms at the top of the histogram display. CrestFactor and Kurtosis
histograms are essentially the same whether they were computed as signal features or rotating
machinery features, since both computations used the TSA signal as a source.

Spectral Features

Compute spectral features from the power spectrum you generated earlier. Click Spectral Features.
In Spectrum, select Vibration_ps/SpectrumData.

Set the frequency band. The power spectrum x scale changes automatically from log to linear when
you open the spectral features dialog box. When you move the frequency slider, the plot shades the
region that the slider setting covers. To capture the power spectrum peaks efficiently, limit the
frequency range to around 10 Hz.
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The histograms show substantial intermixing of healthy and unhealthy data in one or more of the bins
for all three features.

You now have a diverse set of features.
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Save your session data. You need this data to run the “Rank and Export Features in Diagnostic
Feature Designer” on page 2-31 example.

Next Steps
The next step is to rank those features to determine which ones provide the best indication of system
condition. For more information, see “Rank and Export Features in Diagnostic Feature Designer” on
page 2-31.

See Also
Diagnostic Feature Designer

More About
• “Open Diagnostic Feature Designer” on page 2-6
• “Rank and Export Features in Diagnostic Feature Designer” on page 2-31
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer”
• “Interpret Feature Histograms in Diagnostic Feature Designer”
• “Data Preprocessing for Condition Monitoring and Predictive Maintenance”
• “Condition Indicators for Monitoring, Fault Detection, and Prediction”
• “Condition Indicators for Gear Condition Monitoring”
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Rank and Export Features in Diagnostic Feature Designer
This example shows how to rank features using several classification ranking techniques, how to
compare the results, and how to export features from the app. If you want to follow along with the
steps interactively, use the data you imported in “Process Data and Explore Features in Diagnostic
Feature Designer” on page 2-15, and uses the feature set from that example. Use Open Session to
reload your session data using the file name you provided.

When you generate features for classification, you seek the features that perform best at
distinguishing among data of different conditions. When you view the histograms, you can get an idea
of the relative effectiveness of your features. In this example, you use ranking algorithms to perform
this feature comparison more rigorously. Once you have chosen the features you want to retain, you
export these features into the MATLAB workspace.

Rank Features
Rank your features using the default T-Test technique. Click Rank Features. Select FeatureTable1.

Your selection brings up a ranked list of features, displayed as both a bar chart and a numerical table.
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The bar chart legend shows that the initial ranking is performed using the T-Test algorithm. The chart
is normalized to 1 to facilitate visual comparison. The table displays unnormalized ranking scores.
Hover your mouse over a bar to get the full variable name.

Choose an Alternative Ranking Algorithm
Each ranking algorithm uses different criteria to perform the ranking. In the Feature Ranking tab,
click Classification Ranking to bring up a menu that summarizes each method. From that menu,
select Bhattacharyya.
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A Bhattacharyya tab opens with ranking specifications that are standard for all of the techniques.
Click Apply.

Apply updates the ranking display with the new results, displayed along with the original T-Test
results.
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The Bhattacharyya technique yields results that are similar to, but not identical to, the T-Test results.
The highest ranking feature is PeakValue from the Signal Statistics set.

This feature was fourth in the T-test ranking. The crest factor features are still in the top three.

The ranking is still sorted by T-Test. Sort instead by Bhattacharyya. Close the Bhattacharyya tab and
return to the Feature Ranking tab. Then select Bhattacharyya in the Sort by list.
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The ranking table now shows PeakValue at the top.

Delete a Set of Rankings
You have two sets of rankings. Now delete the Bhattacharyya results. In the Feature Ranking tab,
select Delete Scores > Bhattacharyya.

Bhattacharyya disappears from the ranking results.
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Export Features to the MATLAB Workspace
The final step in the Diagnostic Features Designer workflow is to export your features. In the
Feature Ranking tab, select Export > Export features to the MATLAB workspace.

Select the features to export. You can sort the features by any of the rankings you have computed. In
this case, there is only one ranking available, T-Test. The app preselects the top five features.
Modify this selection. Clear the fifth selection and select the sixth feature using Ctrl-Click.
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Your reduced feature table appears in your MATLAB workspace.

See Also
Diagnostic Feature Designer | anova1 | bhattacharyyaDistance | kruskalwallis |
perfcurve | ranksum | relativeEntropy | ttest2

More About
• “Process Data and Explore Features in Diagnostic Feature Designer” on page 2-15
• “Rank and Export Features in Diagnostic Feature Designer” on page 2-31
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer”
• “Perform Prognostic Feature Ranking for a Degrading System Using Diagnostic Feature

Designer”
• “Data Preprocessing for Condition Monitoring and Predictive Maintenance”
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